436. Molecular Polarisability. The Conformations of Various N-Substituted Anilines, Piperidines, and Piperazines.

By M. Aroney and R. J. W. Le Fèvre.

The following conclusions regarding solute species in benzene are reached by the application of polarity, polarisability, and steric considerations to the measurements reported in Tables 1-3: aniline has a pyramidal conformation in which the $\mathrm{H}-\mathrm{H}$ line is parallel to the $\mathrm{C}_{6} \mathrm{H}_{5}$ plane; NN -dimethylaniline conforms to the aniline model, as also do the $\mathrm{Ar} \cdot \mathrm{N}\left(\mathrm{CH}_{2} \cdot\right)_{2}$ portions of $N N$-diethylaniline, 1-phenylpiperidine, and the 1,4-diarylpiperazines; 1phenylpiperidine is a "chair" structure with the $\mathrm{C}_{6} \mathrm{H}_{5}$ group attached equatorially; with piperazine and its disubstituted derivatives both "boat" and "chair" forms occur, the $\mathrm{N}-\mathrm{H}$ and $\mathrm{N}-\mathrm{Me}$ bonds being sometimes equatorial and sometimes axial, and the N -Ar bonds always equatorial.
The primary objective of the present work is to examine the conformations of l-phenylpiperidine and of certain 1,4-disubstituted piperazines by using polarisability information recently established ${ }^{1,2}$ for the various linkages involved. Measurements of the dipole

Table 1. Depolarisation factors for light scattered by solutions of (a) aniline and (b) dimethylaniline in n-hexane.

(a) Solute: Aniline						(b) Solute: Dimethylaniline				
$10^{5} f_{2}$ *	1854	2137	2478	2736	$10^{5} f_{2}{ }^{*}$	1020	1866	3393	5171	614
$\Delta \Delta_{12}$	0.013	0.015	0.016	0.019	$\Delta \Delta_{12}$	0.005	0.010	0.020	0.030	0.035
whence $\Delta \Delta_{12}=0.726 f_{2}-1.80 f_{2}{ }^{2} \quad d_{4}{ }^{25}{ }^{25}$ - \quad - 0.682930 .6881										
${ }_{d_{4}{ }^{25}{ }^{5} f_{2}}{ }^{*}$	$\begin{gathered} 984 \\ 0.67553 \end{gathered}$	$\begin{gathered} 1292 \\ 0 \cdot 67625 \end{gathered}$	$\begin{gathered} 1447 \\ 0.67660 \end{gathered}$	$\begin{gathered} 1786 \\ 0.67738 \end{gathered}$		$\stackrel{\Delta \Delta}{=}$	$\begin{gathered} =0.57 \\ 283 \text {, an } \end{gathered}$	${ }_{5}^{5} f_{2}-\delta_{2}{ }^{2}=$	$\begin{aligned} & 38 f_{2}^{2}, \Sigma \Sigma \\ & 043 . \end{aligned}$	d / Σ
whence $\Sigma \Delta d / \Sigma f_{2}=0.230$, and $\delta_{\infty} \delta^{2}=0.054$										
${ }^{*}$ For $f_{2}=0, \Delta_{1}=0.0973, d_{4}{ }^{25}=0.67327\left(f_{2}=\right.$ molar fraction of solute, cf. ref. 3)										

Table 2. Incremental Kerr effects, refractive indexes, dielectric constants, and densities for solutions in benzene $*$ at 25°.

$\begin{aligned} & 10^{5} w_{2} \\ & 10^{7} \Delta B \end{aligned}$	Solute: 1-Phenylpiperidine						$\begin{gathered} 1834 \\ 0 \cdot 170 \end{gathered}$
	539	623	949	1045	1205	1462	
	$0 \cdot 044$	$0 \cdot 049$	$0 \cdot 081$	$0 \cdot 092$	$0 \cdot 106$	$0 \cdot 132$	
		whence $10^{7} \Delta B=7 \cdot 71_{4} w_{2}+87 \cdot 6 w_{2}{ }^{2}$					
$10^{5} w_{2}$	1893	3547	4442	5614	7520	8522	
Δn	$0 \cdot 0011$	$0 \cdot 0020$	$0 \cdot 0024$	$0 \cdot 0032$	$0 \cdot 0042$	$0 \cdot 0046$	
		whence $\sum \Delta n / \sum w_{2}=0.056$					
$10^{5} w_{2}$	1459	1893	3547	4019	8552	10,328	14,069
ε^{25}	$2 \cdot 3076$	$2 \cdot 3175$	$2 \cdot 3542$	$2 \cdot 3667$	$2 \cdot 4602$	$2 \cdot 4994$	$2 \cdot 5777$
$d_{4}{ }^{25}$	-	0.87589	0.87790	$0 \cdot 87849$	0.88768	$0 \cdot 88588$	0.89037
	whence $\Sigma \Delta \varepsilon / \sum w_{2}=2 \cdot 29 ; ~ \Sigma \Delta d / \sum w_{2}=0 \cdot 116$						
		Solute	$1-p-\mathrm{Nitr}$	phenylpip	ridine		
$10^{5} w_{2}$	115	193	224	352	430	569	833
$10^{7} \Delta B$	$0 \cdot 37$	$0 \cdot 63$	$0 \cdot 68$	1-18	1-46	1-79	$2 \cdot 60$
	whence $10^{7} \Delta B=338 w_{2}-3027 w_{2}{ }^{2}$						
$10^{5} w_{2}$	1866	2763	3197	3735			
Δn	$0 \cdot 0028$	$0 \cdot 0043$	$0 \cdot 0049$	$0 \cdot 0057$			
	whence $\sum \Delta n / \sum w_{2}=0 \cdot 154$						
$10^{5} w_{2}$	224	430	569	833	1382	2351	3622
ε^{25}	$2 \cdot 3304$	2.3818	$2 \cdot 4141$	2.4779	$2 \cdot 6173$	2.8581	3-1757
$d_{4}{ }^{25}$	$0 \cdot 87427$	$0 \cdot 87486$	-	$0 \cdot 87578$	$0 \cdot 87731$	$0 \cdot 87975$	$0 \cdot 88298$

[^0]Table 2. (Continued.)

moments and molar Kerr constants in benzene have therefore been made, as listed in Tables 2 and 3 ; to assist their interpretation, knowledge of the molecular anisotropies of aniline and dimethylaniline as solutes became necessary, and these-determined ${ }^{3}$ in n-hexane-are given in Table \mathbf{l}.

Experimental

Apparatus and Procedures.-These have been as described in refs. 1-3; ref. $\mathbf{3}$ deals particularly with the observation of depolarisation factors for scattered light. Computational methods and symbols here used are as explained in a review; ${ }^{2}$ a full list of symbols with definitions also appears in ref. 4.

Materials.-Solutes were obtained or purified as follow: 1-phenylpiperidine, b. p. 255$260^{\circ}$, from bromobenzene, piperidine, and sodamide; ${ }^{5} 1-p$-nitrophenylpiperidine, m. p. $102-$ 103° (from alcohol), from p-chloronitrobenzene and piperidine; ${ }^{6}$ piperazine, b. p. 142°, from the hydrate by twice distilling it over solid sodium hydroxide followed by once over sodium metal with exclusion of moist air; dinitrosopiperazine, m. p. 156° (from hot water), from the base; ${ }^{7}$ 1,4-dimethylpiperazine, b. p. 130-131 ${ }^{\circ}$, from piperazine, formic acid, and formaldehyde; ${ }^{8}$ 1,4 -diphenylpiperazine, m. p. 164° (from benzene), from ethylene dibromide and aniline; ${ }^{9}$ 1,4-di- p-tolylpiperazine, m. p. 189° (from benzene), from p-toluidine as in ref. 9 ; 1,4 -di- p-nitrophenylpiperazine, m. p. 261° (decomp.) after three crystallisations from nitrobenzene, extraction with boiling alcohol, and drying at 100° (Found: C, $58.5 ; \mathrm{H}, 5 \cdot 0$. Calc. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~N}_{4}$: C, $58.5 ; \mathrm{H}, 4.9 \%$), from p-chloronitrobenzene and piperazine hexahydrate at 150° for 3 hr . [cf. Schmidt and Withmann, ${ }^{10}$ who gave m. p. 248° (decomp.)].

Discussion

Previous Work Relevant to Table 3.-Each of the seven molar Kerr constants is here reported for the first time; that for l-p-nitrophenylpiperidine is remarkable as the largest so far recorded, considerably exceeding the $\infty\left({ }_{m} K_{2}\right)$ values for nitrobenzene ${ }^{11}$ (ca. 1100×10^{-12}) or 4-nitrodiphenyl ${ }^{12}$ (ca. 3260×10^{-12}).

Of the dipole moments listed in Table 3, the literature contains information only for piperazine and its 1,4 -dimethyl and -diphenyl derivatives. ${ }^{13,14}$ The following points may be noted: The moment of l-phenylpiperidine ($1 \cdot 7_{4} \mathrm{D}$) is close to that ($1 \cdot 7_{8} \mathrm{D}$) obtained for $N N$-diethylaniline when the data of Barclay, Le Fèvre, and Smythe ${ }^{15}$ are recalculated on the basis that ${ }_{\mathrm{D}} P=1.05 R_{\mathrm{D}}$; the high polarity of $1-p$-nitrophenylpiperidine recalls Marsden and Sutton's value ${ }^{16}$ for p-nitrodimethylaniline ($6 \cdot 8_{7} \mathrm{D}$). Our estimate for piperazine is identical with that ($1 \cdot 4_{7} \mathrm{D}$) given by Martin, ${ }^{13}$ but for the 1,4 -diphenyl derivative, our moment is $0 \cdot 2_{6} \mathrm{D}$ lower. For 1,4 -dimethylpiperazine we obtain the same value for ${ }_{\infty} P_{2}$ as George and Wright, ${ }^{14}$ but use of ${ }_{\mathrm{D}} P=37 \cdot 8$ c.c. leads to the smaller moment of $0 \cdot 4_{4}$ D.

Conformations of Aniline, Dimethylaniline, and Diethylaniline.-Consideration of these three molecules must precede discussion of others named in Table 3. Aroney and

[^1]Table 3. Polarisations, dipole moments, and molar Kerr constants deduced from benzene solutions at 25°.

	$\alpha \varepsilon_{1}$	β	γ	δ	$\underset{(\text { c.c. })}{\infty}{ }_{(}^{P_{2}}$	$\begin{gathered} R_{\mathrm{D}} \\ \text { (c.c.) } \end{gathered}$	$\mu(\mathrm{D})$	$\infty\left(K_{2}\right) \times 10^{12}$
1-Phenylpiperidine	$2 \cdot 29$	$0 \cdot 133$	$0 \cdot 037$	18.81	117.1	$52 \cdot 0$	$1 \cdot 74$	226
1-p-Nitrophenylpiperidine	$25 \cdot 1$	$0 \cdot 282$	$0 \cdot 103$	824	1024	$67 \cdot 7$	$6 \cdot 8{ }_{0}$	12,670
Piperazine	$2 \cdot 85$	$0 \cdot 119$	$0 \cdot 017$	$-1 \cdot 47_{6}$	$72 \cdot 0$	$26 \cdot 7$	$1 \cdot{ }_{7}$	-12.7
1,4-Dinitrosopiperazine ...	$3 \cdot 39$	$0 \cdot 367$	0.013	-7.68	123.0	$32 \cdot 2$	$2 \cdot 10$	-94
1,4-Dimethylpiperazine ...	0.085	-0.027	-0.033	-0.693	41.8	36.0	$0 \cdot 44$	$2 \cdot 9$
1,4-Diphenylpiperazine ...	0.526	$0 \cdot 212$	0.067	$6 \cdot 12_{2}$	$87 \cdot 6$	$76 \cdot 7$	$0 \cdot 59$	119
1,4-Di-p-tolylpiperazine ...	$0 \cdot 486$	0.179	$0 \cdot 065$	$6 \cdot 439$	98.9	$88 \cdot 1$	0.56	140
1,4-Di- p-nitrophenylpiperazine	11.6	$0 \cdot 341$			790	108.4	ca. 6	-

Le Fèvre ${ }^{17}$ have recorded the following values for $10^{12}{ }_{\infty}\left({ }_{m} K_{2}\right)$: Aniline, $22 \cdot 4$; dimethylaniline, $134 \cdot 2$; diethylaniline, $190 \cdot 6$.

For aniline, $\mu_{\text {resultant }}=1.50$ D, ${ }^{18} R_{\infty}=29.1$ c.c. (calc. from refractions by Vogel ${ }^{19}$), and $\infty_{\infty} \delta_{2}{ }^{2}=0.054$ (present work). If now, following Marsden and Sutton, ${ }^{16} \mu_{\text {resultant }}$ is taken as acting at 43° to the $\mathrm{C}-\mathrm{N}$ bond and in the plane defined by the $\mathrm{C}-\mathrm{N}$ longitudinal axis and the bisector of the HNH angle, we have, since $b_{1}+b_{2}+b_{3}=3.460 \times 10^{-23}$,

$$
\theta_{1}=3.49 \times 10^{-35} \text { and } \theta_{2}=1.83 \times 10^{-35}
$$

which lead to alternative solutions:

$$
\left.\begin{array}{l}
10^{23} b_{1}=1 \cdot 49 \\
10^{23} b_{2}=1 \cdot 14 \\
10^{23} b_{3}=0.83
\end{array}\right\} \text { or }\left\{\begin{array}{l}
0.87 \\
1.08 \\
1.51
\end{array}\right.
$$

(It is assumed that b_{1} lies along the $\mathrm{C}-\mathrm{N}$ axis, and that b_{3} is at 90° to the $\mathrm{C}-\mathrm{N}$ bond and in the plane just mentioned.) By tensor addition (using the anisotropic $\mathrm{C}-\mathrm{N}$ and $\mathrm{N}-\mathrm{H}$ polarisabilities of ref. 1 together with related data ${ }^{3}$ for the phenyl group) semi-axes and molar Kerr constants are calculable for the two extreme models: (a) in which the line joining the amino-hydrogen atoms is parallel to the plane of the $\mathrm{C}_{6} \mathrm{H}_{5}$ ring, or (b) in which it is perpendicular. (The CNH and HNH inter-bond angles are taken as tetrahedral; cf. refs. 20 and 21.) Results appear as follows:

	Conformation (a)	Conformation (b)
$10^{23} b_{1}$	1.27	$1 \cdot 27$
$10^{23} b_{2}$	$1 \cdot 24$	$0 \cdot 86$
$10^{23} b_{3}$	$0 \cdot 89$	$1 \cdot 27$

Evidently, therefore, of the two experimental sets of semi-axes, that in which $b_{1}=$ 1.49×10^{-23} is the more appropriate. No account has so far been taken of resonance interaction; this (cf. second ref. under 3) should cause a positive exaltation of polarisability along the b_{1} direction; in fact, comparison of the semi-axes predicted above for (a) with those from experiment shows that exaltations of $\Delta b_{1}=+0 \cdot 22, \Delta n_{2}=-0 \cdot 10$, and $\Delta b_{3}=$ -0.06 (all $\times 10^{-23}$ c.c.) will satisfactorily explain the present measurements.

In passing, it is relevant to the conclusions of ref. 17 that if, in the analysis of our observations, b_{1} were taken along the direction of $\mu_{\text {resultant }}, b_{1}$ would emerge as $1 \cdot 17 \times 10^{-23}$ —a figure smaller than any of the predicted values. Moreover, were aniline

[^2] 1945.
to be a completely flat structure, b_{1}, b_{2}, and b_{3} would be (exaltations being neglected) respectively $1 \cdot 26,1 \cdot 24$, and 0.90 ($\times 10^{-23}$ c.c.), corresponding to a molar Kerr constant of $+52 \times 10^{-12}$, against the ${ }_{\mathrm{m}} K_{\text {obs. }}$ of 22.4×10^{-12}; the ${ }_{\mathrm{m}} K_{\text {calc. }}$. would be increased if exaltations were considered. Aniline as a solute in benzene is thus clearly non-planar; for it, conformation (a) above is suggested as most reasonably meeting the requirements of available evidence.

For dimethylaniline we have $b_{1}+b_{2}+b_{3}=4.608 \times 10^{-23}$ c.c. (from ref. 19) and $\infty_{\infty} \delta_{2}{ }^{2}=0.043$ (Table 1); θ_{1} is therefore $5 \cdot 15 \times 10^{-35}$. From Table 3, $\theta_{1}+\theta_{2}$ is 31.9×10^{-35}, whence $\theta_{2}=26.76 \times 10^{-35}$. Extraction of the molecular semi-axes of polarisability requires knowledge of the disposition of $\mu_{\text {resuitant }}(1.61 \mathrm{D}, \mathrm{cf}$. ref. 15) in relation to the directions of b_{1}, b_{2}, and b_{3}. In the absence of other information we make two assumptions: (a) following Wepster, ${ }^{22}$ that the $\mathrm{Me} \cdot \cdots$ Me line lies parallel to the plane of the $\mathrm{C}_{6} \mathrm{H}_{5}$ ring, and (b) following Marsden and Sutton, ${ }^{16}$ that $\mu_{\text {resultant }}$ acts at 38° to the $\mathrm{C}_{\mathrm{Ar}}-\mathrm{N}$ bond and in the plane perpendicular to the Ar ring. Without modification these do not permit the mathematical solution desired, probably because of small errors in our observational equations. Accordingly, rather than altering either (a) or (b), we prefer to reduce the unknown semi-axes to two by estimating that b_{i} which is certain to be the least, namely b_{3}. This may be done by using the bond and group semi-axes ${ }^{1-3}$ for $\mathrm{N}-\mathrm{C}$, $\mathrm{C}_{6} \mathrm{H}_{5}^{-}$, and $\mathrm{C}-\mathrm{H}$, in a model in which the three angles at the nitrogen atom are tetrahedral, and by correcting the value so obtained by adding the exaltation already noted for aniline; alternatively, the b_{3} quoted above for aniline may be changed by withdrawal of data for the $\mathrm{N}-\mathrm{H}$ links and substitution of those for two $\mathrm{N}-\mathrm{CH}_{3}$ units. By the first route $10^{23} b_{3}$ emerges as $1.25-0.06=1 \cdot 19 ;$ by the second, directly as $1 \cdot 19$. Insertion of $b_{3}=1 \cdot 19 \times 10^{-23}$ into the expressions for the total polarisability and for θ_{2} now yields $10^{23} b_{1}$ and $10^{23} b_{2}$ as $2 \cdot 16$ and $1 \cdot 26$, respectively. From these, by subtractions corresponding to two $\mathrm{C}-\mathrm{H}$ links, may be drawn the semi-axes ($2 \cdot 03,1 \cdot 13$, and $1 \cdot 06$) appropriate for that fragment, namely $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{~N}\left(\mathrm{CH}_{2} \cdot\right)_{2}$, which is basic to several of the molecules to be discussed later.

As a test the new data are applied to diethylaniline, for which ${ }^{15} \mu_{\text {resultant }}(=1.81 \mathrm{D})$ is taken as acting as in dimethylaniline. ${ }^{16}$ Three conformations are depicted in Fig. 1 (a),

Fig. l.

(a)

Calc. $\begin{aligned} b=b_{1} & =2.62 \times 10^{-23} \\ b_{2} & =1.57 \quad, \\ b_{3} & =1.50 \quad,\end{aligned}$
Calc. ${ }_{\mathrm{m}} K=218 \times 10^{-12}$

(b)

Calc. $b=b_{1}=2.48 \times 10^{-23}$
Calc. ${ }_{\mathrm{m}} K=\begin{gathered}b_{3}=1.57 \\ =166 \times 10^{-12}\end{gathered}$

(c)

Calc. $\begin{aligned} b=b_{1} & =2.55 \times 10^{-23} \\ b_{2} & =1.61 \quad " \\ b_{3} & =1.54 \quad,\end{aligned}$ Calc. ${ }_{\mathrm{m}} K=190 \times 10^{-12}{ }^{\prime \prime}$
(b), and (c); the calculated semi-axes, and the expected ${ }_{\mathrm{m}} K^{\prime}$'s being given below. Inspection of models shows $l(a)$ to be less stable than (b) or (c) in which the methyl groups are more separated. The molar Kerr constant by experiment is 191×10^{-12}, in good agreement with that forecast for (c), a conformation intermediate between (a) and (b).

Conformation of N-Phenylpiperidine.-By analogy with the stereochemistry of cyclohexane and from the evidence put forward by us recently, ${ }^{1} N$-phenylpiperidine should contain the piperidino-ring as a "chair" to which a phenyl group, being large, would be attached by an "equatorial" bond (see Fig. 2). The observed $\infty_{\infty}\left(K_{2}\right)$ of 226×10^{-12} agrees with this: if b_{1} is along the $\mathrm{C}-\mathrm{N}$ direction and b_{3} is perpendicular to b_{1} and in the plane of $\mathrm{C}-\mathrm{N}$ and the bisector of the angle $\mathrm{CH}_{2} \cdot \mathrm{~N} \cdot \mathrm{CH}_{2}$, the semi-axes ($\times 10^{23}$) predicted are $b_{1}=2.70, b_{2}=1.70$, and $b_{3}=1.60$, from which (with $\mu_{\text {resultant }}=1.74 \mathrm{D}$, cf. Table 3)

[^3]an ${ }_{\mathrm{m}} K$ of 202×10^{-12} is calculable if $\mu_{\text {resultant }}$ is at 38° to b_{1}; were the angle only 3° less, ${ }_{\mathrm{m}} K_{\text {calc. }}$ is 229×10^{-12}; the correct angle thus appears to be $c a .36^{\circ}$. The corresponding ${ }_{\mathrm{m}} K^{\prime} \mathrm{s}$ computed for the conformation in which the phenyl group is attached axially are 179×10^{-12} if the angle between b_{1} and $\mu_{\text {resultant }}$ is 35° or 157×10^{-12} if it is 38°. The measured ${ }_{\mathrm{m}} K\left(226 \times 10^{-12}\right)$ is thus in agreement with expectations noted at the beginning of this paragraph.

Conformations of Piperazine and its 1,4-Disubstituted Derivatives.-For the base itself we have considered nine conformations produced by taking NCC and CCC angles as tetrahedral, and the HNC angle as already quoted; these possibilities are indicated as $4 a-4 i$

Fig. 3.

Fig. 2.

(4e)

(4d)

Table 4. Polarisability semi-axes $\left(\times 10^{23}\right)$, molar Kerr constants $\left(\times 10^{12}\right)$, and resultant dipole moments (D) expected for nine possible conformations of piperazine.

| Conformation
 (see Fig. 3) | Dispositions
 of $\mathrm{N}-\mathrm{H}$ bonds | Semi-axes
 (calc.) \dagger | ${ }_{\mathrm{m}} K$ (calc.) |
| :---: | :---: | :---: | :---: | :---: |$\quad \mu_{\text {res. }}$ (calc.)

* Indicated as equatorial or axial in "chair" forms, or as pseudo-equatorial or pseudo-axial in " boat" forms.
\dagger Reported in descending order as b_{1}, b_{2}, and b_{3}.
in Table 4 and Fig. 3. Bond polarisability data give expected semi-axes as shown below the formulæ; in these calculations b_{1} is computed in a left-to-right direction for each diagram while b_{3} is in, and b_{2} perpendicular to, the plane of the paper. The molar Kerr constants and resultant moments corresponding to structures $4 a$ to $4 i$ are also included in Table 4.

The observed ${ }_{\mathrm{m}} K$ and μ are respectively $-\mathrm{I} 2.7 \times 10^{-12}$ and $1 \cdot 4_{7} \mathrm{D}$. No single conformation fits both these properties simultaneously. Since the volume requirement of the nitrogen lone-pair orbital exceeds that of an $\mathrm{N}-\mathrm{H}$ bond, ${ }^{1}$ the arguments used in cyclohexane stereochemistry suggest that the three " boat" conformations $4 d, 4 e$, and $4 f$ are unlikely to be present in significant amounts, and that $4 b$ is more probable than $4 a$ or $4 c$. Since the molar Kerr constant as measured is negative, form $4 b$ must be admixed with a form whose
${ }_{\mathrm{m}} K$ is itself negative: this criterion is satisfied only by $4 g$. Accordingly, we suggest that piperazine in benzene solution contains the conformations $4 b$ and $4 g$ in roughly the ratio $1: 2$; for such a mixture $10^{12}{ }_{\mathrm{m}} \mathrm{K}$ and $\mu_{\text {resultant }}$ would be -13 and 1.4 D , in good agreement with the values found.

Table 5 summarises an attempt to analyse our observations with 1,4-dimethylpiperazine.
The situation is less clear than with the parent base but, after examining models and bearing in mind our earlier findings ${ }^{1}$ with 1 -methylpiperidine, we suggest that 1,4 -dimethylpiperazine in solution contains the species $5 a, 5 b, 5 c, 5 g, 5 h$, and $5 i$, with the last in rather greater proportion than the other five.

(5a)

Fig. 4.

Table 5. Predictions for nine possible conformations of 1,4-dimethylpiperazine.

Conformation (see Fig. 4)	Dispositions of N-Me bonds
$5 a$	eq, eq
$5 b$	ax, ax
$5 c$	eq, ax
$5 d$	$\psi \mathrm{eq}, \psi \mathrm{eq}$
$5 e$	$\psi \mathrm{ax}, \psi \mathrm{ax}$
$5 f$	$\psi \mathrm{eq}, \psi \mathrm{ax}$
$5 g$	$\psi \mathrm{ax}, \psi \mathrm{ax}$
$5 h$	$\psi \mathrm{eq}, \psi \mathrm{eq}$
$5 i$	$\psi \mathrm{eq}, \psi \mathrm{ax}$

Semi-axes
(calc)
(calc.)
1-453, $1 \cdot 326, \mathrm{I} \cdot 365$
$\mathrm{l} \cdot 473, \mathrm{I} \cdot 326, \mathrm{I} \cdot 344_{5}$
$1 \cdot 463,1 \cdot 326,1 \cdot 355$
l-471, 1 -326, $\mathrm{I} \cdot 346_{5}$
1-491, 1-326, I-326
l-481, l-326, I-336
$1 \cdot 345,1 \cdot 436, \mathrm{I} \cdot 363$
l-345, 1-421, $1 \cdot 378$
$1 \cdot 345,1 \cdot 429,1 \cdot 370_{5}$

$\mathrm{m} K$ (calc.)	$\mu_{\text {res. }}$ (calc.)
+0.6	0
+0.9	0
+3.5	1.3
-16.4	1.7
+1.3	0
+21.4	1.5
-2.0	0.8_{7}
-1.4	1.7
+4.4	0.8^{7}

Such a conclusion is harmonious with proton magnetic resonance determinations reported by George and Wright ${ }^{14}$ (which indicated that a "chair" conformation alone was inadequate, and that flexible structures should be postulated) and also with details of diquaternary salt formation with alkylene dibromides published by Mann and Senior ${ }^{23}$ (which can be readily understood if " boat" forms participate in the equilibrium; presumably, for reasons originally given by Wightman, ${ }^{24}$ " boat" structures such as $5 g$, $5 h$, and $5 i$ should be readily interconvertible; steric hindrances involving the methyl groups and/or the lone-pair orbitals are likely to depress the generation of structures $5 d-5 f)$.

George and Wright ${ }^{14}$ give the dipole moment of 1,4 -dichloropiperazine in benzene as

[^4]${ }^{24}$ Wightman, J., 1925, 12'\%, 142 l.
0.71 D . Since the van der Waals radius of chlorine ($1.8 \AA$) is not far short of that ($2.0 \AA$) of methyl, ${ }^{25}$ considerations just outlined for dimethylpiperazine should apply to the dichloro-analogue. For conformations corresponding to $5 a-5 i$, but with chlorine replacing methyl, moments are calculable ($\mu_{\mathrm{N}-\mathrm{Cl}}$ being taken as 0.3 D) respectively as follows: $0,0,0 \cdot 4_{9}, 1 \cdot 61,2 \cdot 16,1 \cdot 93,1 \cdot 31,0.50,0.9_{4}$. The molecule therefore cannot be merely a mixture of " chair " forms because $\mu_{\text {obo. }}$ is too great; if instead, as a solute, it is a mixture of the first three and the last three forms, the apparent moment by measurement can be explained.

Fig. 5.

(6c)

Table 6. Predictions for five possible conformations of $\mathrm{N}^{\prime} \mathrm{N}^{\prime}$-diphenyl- and -di-p-tolyl-piperazines.

Conformation (see Fig. 5)	Dispositions N -Ar bonds	$\mu_{\text {res. }}$ calc. for both substances	Semi-axes (calc.) for		${ }_{\mathrm{m}} K_{\text {calc. }} \quad{ }_{\mathrm{m}} K_{\text {calr. }}$. for diphenyl- for ditolyl piperazine piperazine	
			diphenyl-	ditolyl-		
			piperazine	piperazine		
$6 a$	eq, eq	0	4.27, 2.32, $2 \cdot 18$	$4 \cdot 72,2 \cdot 62,2 \cdot 48$	195	225
$6 b$	\%eq, \%eq	$2 \cdot 0$	4.27, $2 \cdot 32,2 \cdot 18$	$4 \cdot 72,2 \cdot 62,2 \cdot 48$	-290	-392
6 c	$\psi a x, \psi a x$	$2 \cdot 4$	4.08, 2.45, $2 \cdot 22$	$4 \cdot 52,2 \cdot 77,2.53$	1260	1360
$6 d$	$\psi \mathrm{eq}, \psi \mathrm{eq}$	$0 \cdot 4$	3.75, 2.66, $2 \cdot 34$	4.17, 3.01, $2 \cdot 65$	73	85
$6 e$	$\psi \mathrm{eq}, \psi \mathrm{ax}$	$1 \cdot 6$	3-37, 2-99, $2 \cdot 40$	3.76, 3.35, $2 \cdot 71$	182	200

The axis of maximum polarisability is denoted by b_{1}, and of the least by b_{3} in each case.

The situation with 1,4 -diphenyl- and 1,4-di- p-tolyl-piperazine is partly summarised in Table 6, where calculations for five conformations are listed. We retain the assumption that the $\mathrm{Ar} \cdot \mathrm{N}\left(\mathrm{CH}_{2}\right)_{\mathbf{2}}$ units are as in NN -dimethylaniline. Inspection of Leybold models shows that other possibilities can be rejected on steric grounds. That the diequatorial chair form does not exist alone is clear from dielectric polarisation evidence: neither the diphenyl nor the ditolyl compound is non-polar, although the moments are small and therefore difficult to assess with accuracy. Moreover, both the ${ }_{\mathrm{m}} K^{\prime}$'s from experiment are much below those calculated for $6 a$. Any considerable participation of $6 b, 6 c$, or $6 e$ is also counter-indicated on polarity and/or polarisability grounds.

Accordingly, we suggest that these diarylpiperazines are present in solution as mixtures of types $6 a$ and $6 d$, with the latter predominating; a small amount of $6 e$ could also occur without invalidating our numerical results. The fact (Table 3) that di-p-nitrophenylpiperazine has a high moment (around 6 D , sparing solubility prevents this being more than an estimate) is reconcilable with this conclusion, since the values of $\mu_{\text {calc. }}$. for the five structures $6 a-e$ are $0, c a .2, c a .13, c a .6$, and $c a .6 .5 \mathrm{D}$, respectively.

Assistance from Dr. B. Purnachandra Rao with the measurements recorded in Table 1 is gratefully acknowledged.

[^5]
[^0]: ${ }^{1}$ Aroney and Le Fèvre, Proc. Chem. Soc., 1958, 82; J., 1958, 3002.
 ${ }^{2}$ Le Fèvre and Le Fèvre, Rev. Pure Appl. Chem., 1955, 5, 261; J., 1954, 1577; Chem. and Ind., 1955, 506, 1121; 1956, 54; J., 1956, 3549.
 ${ }_{3}$ Le Fèvre and Purnachandra Rao, J., 1957, 3644; 1958, 1465; 1960, 119.

[^1]: ${ }^{4}$ Le Fèvre, Le Fèvre, and Oh, Austral. J. Chem., 1957, 10, 218.
 ${ }^{5}$ Brotherton and Bunnett, Chem. and Ind., 1957, 80.
 ${ }^{6}$ Le Fèvre and Turner, $J_{.,}$1927, 1113.
 ${ }^{7}$ Ladenburg, Ber., 1891, 24, 2400.
 ${ }^{8}$ Eschweiler and Clarke, " Organic Reactions," Wiley, New York, Vol. 5, p. 323.
 ${ }^{9}$ Pratt and Young, J. Amer. Chem. Soc., 1918, 40, 1429.
 ${ }^{10}$ Schmidt and Withmann, Ber., 1891, 24, 3240.
 ${ }^{11}$ Le Fèvre and Le Fèvre, $J ., 1953,4041$.
 ${ }^{12}$ Chau, Le Fèvre, and Le Fèvre, J., 1959, 2666.
 ${ }^{13}$ Martin, Thesis, London, 1936, pp. 134, 180 (quoted by Partington, " An Advanced Treatise on Physical Chemistry," Vol. 5, Longmans, Green \& Co., London, 1954, p. 538).
 ${ }^{14}$ George and Wright, Canad. J. Res., 1958, 36, 189.
 15 Barclay, Le Fèvre, and Smythe, Trans. Faraday Soc., 1951, 47, 357.
 ${ }^{16}$ Marsden and Sutton, J., 1936, 599.

[^2]: ${ }^{17}$ Aroney and Le Fèvre, $J ., 1956,2775$.
 18 Le Fèvre, Roberts, and Smythe, J., 1949, 902.
 19 Vogel, J., 1948, 1825.
 ${ }^{20}$ Brockway and Jenkins, J. Amer. Chem. Soc., 1936, 58, 2036.
 ${ }_{21}$ Herzberg, "Infrared and Raman Spectra of Polyatomic Molecules," Van Nostrand, New York,

[^3]: ${ }_{22}$ Wepster, Rec. Tyav. chim., 1957, 76, 335, 357.

[^4]: ${ }^{23}$ Mann and Senior, J., 1954, 4476.

[^5]: University of Sydney, N.S.W., Australia.
 [Received, June 1st, 1959.]
 ${ }^{25}$ Pauling, " The Nature of the Chemical Bond," Cornell Univ. Press, 2nd edn., 1945, p. 189.

